sgpemv2/src/backend/dynamic_process.cc
elvez 96728edfce - Fixed compilation errors caused by latest changes to serialization code
- Setup makefile for xmlsave plugin. It still can`t be activated. why?
- Added a temporary command SAVE to commandline interface to try serialization

git-svn-id: svn://svn.gna.org/svn/sgpemv2/trunk@826 3ecf2c5c-341e-0410-92b4-d18e462d057c
2006-08-07 00:54:43 +00:00

264 lines
7.6 KiB
C++

// src/backend/dynamic_process.cc - Copyright 2005, 2006, University
// of Padova, dept. of Pure and Applied
// Mathematics
//
// This file is part of SGPEMv2.
//
// This is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// SGPEMv2 is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SGPEMv2; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include "dynamic_process.hh"
#include "static_process.hh"
#include "dynamic_thread.hh"
#include "serialize_visitor.hh"
#include "deletor.tcc"
#include <algorithm>
#include <functional>
#include <cassert>
using namespace sgpem;
using namespace std;
DynamicProcess::DynamicProcess(StaticProcess* core) :
DynamicSchedulable(), _core(core)
{
assert(core != NULL);
}
DynamicProcess::DynamicProcess(const DynamicProcess &other) :
Schedulable(), DynamicSchedulable(other), Process(),
_core(other._core)
{
typedef vector<DynamicThread*>::const_iterator ThreadIt;
const vector<DynamicThread*>& other_threads = other._dynamic_threads;
for(ThreadIt it = other_threads.begin(); it != other_threads.end(); ++it)
new DynamicThread(*(*it), this);
}
DynamicProcess::~DynamicProcess()
{
for_each(_dynamic_threads.begin(), _dynamic_threads.end(),
memory::deletor<DynamicThread>());
}
std::vector<Thread*>
DynamicProcess::get_threads()
{
return vector<Thread*>(_dynamic_threads.begin(), _dynamic_threads.end());
}
std::vector<const Thread*>
DynamicProcess::get_threads() const
{
return vector<const Thread*>(_dynamic_threads.begin(), _dynamic_threads.end());
}
Schedulable::state
DynamicProcess::get_state() const
{
int total = _dynamic_threads.size();
int running = 0;
int ready = 0;
int blocked = 0;
int terminated = 0;
int future = 0;
unsigned int closest = 0;
vector<DynamicThread*>::const_iterator it = _dynamic_threads.begin();
for(; it != _dynamic_threads.end(); it++)
{
if ((**it).get_state() == state_running) running++;
if ((**it).get_state() == state_ready) ready++;
if ((**it).get_state() == state_blocked) blocked++;
if ((**it).get_state() == state_terminated) terminated++;
if ((**it).get_state() == state_future)
{
unsigned int arrival = (**it).get_arrival_time();
// if this is the first future occurrence, record its arrival;
// else record its arrival if and only if it is smaller then the recorded one
if (future == 0)
closest = arrival;
else
closest = (closest < arrival) ? closest : arrival;
future++;
}
}
assert(total > 0);
assert(running == 1 || running == 0);
assert(running + ready + blocked + terminated + future == total);
if (running > 0)
return state_running;
if (ready > 0) // running == 0
return state_ready;
if (blocked > 0) // running == 0 && ready == 0
return state_blocked;
// Now check if a "hole" happens: if all threads are terminated
// or blocked the next
// thread to start, e.g. the one with the least arrival_time, has
// start time greater than the current process elapsed time, then
// pass from state_future to state_terminated:
if (closest > get_elapsed_time())
return state_terminated;
if (terminated > 0) // running == 0 && ready == 0 && blocked == 0
return state_terminated;
if (future > 0) // running == 0 && ready == 0 && blocked == 0 && terminated == 0
return state_future;
// I'm not sure if we can get here (maybe if there are no threads?),
// but I don't like this compiler warning: 'control reaches end of non-void function'
return state_future;
// Since premature optimization is the root of all evil, and the
// following code was very fast but also very wrong, the coder
// will be punished by allowing her to code in C++ just after
// having passed "Algoritmi 3" exam with full marks.
/*
typedef vector<DynamicThread*>::const_iterator ThreadIt;
static const int uninitialized = -1;
assert(_dynamic_threads.size() > 0);
state result = state_future;
int next_thread_starts_at = uninitialized;
for(ThreadIt it = _dynamic_threads.begin(); it != _dynamic_threads.end(); ++it)
{
state thread_state = (*it)->get_state();
// This is the logic behind the code:
// If there is at least one running thread, the result is
// running. If not, it may be either blocked, ready, future or terminated.
// We have these cases (a state takes precedence over some other one):
// (a) if a thread is running, return immediately state_running
// (b) if a thread is ready, puts unconditionally result as state_ready,
// and continue iterating (to see if there's a running thread)
// (c) if a thread is blocked, and result is not state_ready, result
// becomes state_blocked, and continue iterating (to see if there are
// ready or running threads)
// (d) if a thread is future, and result is not state_ready or
// state_blocked, put result as state_future, and remember
// when the next thread will start (d1) (see at the end of this
// method for the rationale (d2)). Then continue iterating.
// (e) else (if all threads are state_terminated) put result as
// state_terminated.
// TODO Is this OK? Must be tested...
int thread_starts_at;
switch(thread_state)
{
case state_running: // (a)
return state_running;
case state_ready: // (b)
result = state_ready;
continue;
case state_blocked: // (c)
result = state_blocked;
continue;
case state_future: // (d)
result = state_future;
thread_starts_at = (*it)->get_arrival_time();
if(next_thread_starts_at == uninitialized) // (d1)
next_thread_starts_at = thread_starts_at;
else
next_thread_starts_at = std::min(thread_starts_at, next_thread_starts_at);
continue;
default: // (e)
result = state_terminated;
}
} //~ "for" iterating over threads
// reused hole checking system
*/
}
void
DynamicProcess::serialize(SerializeVisitor& translator) const
{
// translator.from_process(*_core);
translator.from_process(*this);
}
StaticProcess&
DynamicProcess::get_core()
{
return *_core;
}
const StaticProcess&
DynamicProcess::get_core() const
{
return *_core;
}
std::vector<DynamicThread*>&
DynamicProcess::get_dynamic_threads()
{
return _dynamic_threads;
}
unsigned int
DynamicProcess::get_elapsed_time() const
{
unsigned int result = 0;
for(std::vector<DynamicThread*>::const_iterator it = _dynamic_threads.begin();
it != _dynamic_threads.end(); it++)
{
result += (*it)->get_elapsed_time();
}
return result;
}
int
DynamicProcess::get_last_acquisition() const
{
int result = -1;
for(std::vector<DynamicThread*>::const_iterator it = _dynamic_threads.begin();
it != _dynamic_threads.end(); it++)
{
int acq = (*it)->get_last_acquisition();
if(result < acq)
result = acq;
}
return result;
}
int
DynamicProcess::get_last_release() const
{
int result = -1;
for(std::vector<DynamicThread*>::const_iterator it = _dynamic_threads.begin();
it != _dynamic_threads.end(); it++)
{
int acq = (*it)->get_last_release();
if(result < acq)
result = acq;
}
return result;
}