sgpemv2/src/simulation_widget.cc

659 lines
20 KiB
C++
Raw Normal View History

// src/simulation_widget.cc - Copyright 2005, 2006, University
// of Padova, dept. of Pure and Applied
// Mathematics
//
// This file is part of SGPEMv2.
//
// This is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// SGPEMv2 is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SGPEMv2; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include "gettext.h"
#include "simulation_widget.hh"
#include "cairo_elements.hh"
#include <glibmm/refptr.h>
#include <gtkmm/action.h>
#include <gtkmm/actiongroup.h>
#include <gtkmm/menu.h>
#include <gtkmm/uimanager.h>
#include <sgpemv2/history.hh>
#include <sgpemv2/simulation.hh>
#include <sgpemv2/string_utils.hh>
#include <cassert>
#ifndef NDEBUG
#include <iostream>
#endif
using namespace sgpem;
using namespace Gtk;
using namespace Glib;
SimulationWidget::SimulationWidget(Simulation& simulation)
: Glib::ObjectBase("sgpem_SimulationWidget"),
SimulationObserver(),
HistoryObserver(),
CairoWidget(),
_simulation(&simulation),
_x_unit(10), _y_unit(10),
_n_proc(0), _n_thr(0)
{
// Register this SimulationObserver:
_simulation->attach(*this);
// Register this HistoryObserver:
_simulation->get_history().attach(*this);
// count_elements();
// define top margin in y units
_yu_top_margin = 1.0;
// define left margin in x units
_xu_left_margin = 1.0;
// define graph left margin in x units
_xu_left_graph_margin = 11.0;
// define process bar spacing in y units
_yu_process_bar_spacing = 1.0;
// define process bar height in y units
_yu_process_bar_height = 2.0;
// define thread bar spacing in y units
_yu_thread_bar_spacing = 0.5;
// define thread bar height in y units
_yu_thread_bar_height = 1.0;
//
_ready_process_gradient = 0;
_running_process_gradient = 0;
_blocked_process_gradient = 0;
_partial_redraw = false;
_last_drawn = 0;
}
SimulationWidget::~SimulationWidget()
{
// Unregister this HistoryObserver:
_simulation->get_history().detach(*this);
// Unregister this SimulationObserver:
_simulation->detach(*this);
}
void
SimulationWidget::update(const Simulation& /* changed_simulation */ )
{
}
void
SimulationWidget::update(const History& /* changed_history */ )
{
// Force redraw and resize
_last_drawn = 0;
_partial_redraw = false;
resize_redraw();
}
bool
SimulationWidget::get_show_threads() const
{
return _show_threads;
}
bool
SimulationWidget::set_show_threads(bool show)
{
bool old_show = _show_threads;
_show_threads = show;
return old_show;
}
void
SimulationWidget::draw_widget(cairo_t* ctx)
{
if(_n_proc<1) // nothing to draw
{
cairo_move_to(ctx, 2.0*_x_unit, 2.0*_y_unit);
cairo_show_text(ctx, _("Nothing to see here... add some processes! Right-click on the Schedulables view in this window."));
return;
}
draw_names(ctx);
draw_grid(ctx);
draw_bars(ctx);
}
void
SimulationWidget::draw_names(cairo_t* ctx)
{
// show processes (and thread) names...
// useful constants
const History& hist = _simulation->get_history();
const double top_margin = _yu_top_margin * _y_unit;
const double left_margin = _x_unit;
const double left_graph_margin = _xu_left_graph_margin * _x_unit;
const double process_bar_spacing = _yu_process_bar_spacing * _y_unit;
const double process_bar_height = _yu_process_bar_height * _y_unit;
const double process_height = (_yu_process_bar_height + 2*_yu_process_bar_spacing) * _y_unit;
const double thread_height = (2.0*_yu_thread_bar_spacing+_yu_thread_bar_height) * _y_unit;
// const double graph_height = _n_proc * process_height + (_show_threads?_n_thr:0) * thread_height;
// set a rectangular clip region to cut long names
// - set the rectangle
cairo_rectangle(ctx, 0, top_margin,
left_graph_margin - left_margin,
_n_proc*process_height + _n_thr*thread_height);
// - set the clip region
cairo_clip(ctx);
// text start position: margin + half of text height
double ypos = top_margin + _y_unit / 2.0;
const Environment::Processes& processes = hist.get_last_environment().get_processes();
Environment::Processes::const_iterator proc_iter = processes.begin();
// - draw all processes names
while(proc_iter!=processes.end())
{
// take pointer to current process
Process* p = (*proc_iter);
proc_iter++;
// move to bar center adding a white row before
ypos += process_bar_spacing + process_bar_height/2.0;
cairo_move_to(ctx, left_margin, ypos);
// show process name
cairo_show_text(ctx,p->get_name().c_str());
// calc position to next row skipping height of process bar
ypos += process_bar_height/2.0;
// - draw (if needed) threads names
if(_show_threads)
{
const std::vector<Thread*>& tvect = p->get_threads();
std::vector<Thread*>::const_iterator thr_iter = tvect.begin();
while(thr_iter!=tvect.end())
{
Thread* t = (*thr_iter);
thr_iter++;
// move to bar center adding white space as needed
ypos += thread_height/2.0;
cairo_move_to(ctx, left_margin+_x_unit, ypos);
// show thread name
cairo_show_text(ctx,t->get_name().c_str());
// calc position to next thread bar begin
ypos += thread_height/2.0; // height of thread bar
} // ~ while(thr_iter!=tvect.end())
} // ~ if(_show_threads)
// calc position to next process bar begin
ypos += process_bar_spacing; // white row after text
} // ~ while(proc_iter!=processes.end())
// remove clip region
cairo_reset_clip(ctx);
}
void
SimulationWidget::draw_grid(cairo_t* ctx)
{
const History& hist = _simulation->get_history();
const unsigned int hist_front = hist.get_front() == 0 ? 0 : hist.get_front() - 1;
const double top_margin = _yu_top_margin * _y_unit;
const double left_graph_margin = _xu_left_graph_margin * _x_unit;
const double process_height = (_yu_process_bar_height + 2*_yu_process_bar_spacing) * _y_unit;
const double thread_height = (2.0*_yu_thread_bar_spacing+_yu_thread_bar_height) * _y_unit;
const double graph_width = (2.0 + hist_front) * _x_unit;
const double graph_height = _n_proc * process_height + (_show_threads?_n_thr:0) * thread_height;
// draw graph grid
double ypos = top_margin;
const Environment::Processes& processes = hist.get_last_environment().get_processes();
Environment::Processes::const_iterator proc_iter = processes.begin();
// - draw all HOR lines
while(proc_iter!=processes.end())
{
Process* p = (*proc_iter);
proc_iter++;
// draw one HOR line per process
cairo_move_to(ctx, left_graph_margin, ypos);
cairo_rel_line_to(ctx, graph_width, 0);
// calc next line position
ypos += process_height; // skip a process heigh
if(_show_threads)
{
int nt = p->get_threads().size();
// calc next line position (if show thread enabled)
ypos += thread_height * nt;
} // ~ if(_show_threads)
} // ~ while(proc_iter!=processes.end())
// draw last HOR line
cairo_move_to(ctx, left_graph_margin, ypos);
cairo_rel_line_to(ctx, graph_width, 0);
// - draw left VER line
cairo_move_to(ctx, left_graph_margin, top_margin);
cairo_rel_line_to(ctx, 0, graph_height);
// right close the graph only if simulation stopped
if(_simulation->get_state()==Simulation::state_stopped)
{
// - draw right VER line
cairo_move_to(ctx, left_graph_margin + graph_width, top_margin);
cairo_rel_line_to(ctx, 0, graph_height);
}
// trace lines on output context
cairo_stroke(ctx);
// Draw a grey vertical line every fifth step
cairo_save(ctx);
cairo_set_line_width(ctx, 0.125 * cairo_get_line_width(ctx));
cairo_set_source_rgb(ctx, 0.3, 0.3, 0.3);
for(double step = _x_unit; step < graph_width - _x_unit; step += 5 * _x_unit)
{
cairo_new_path(ctx);
cairo_move_to(ctx, left_graph_margin + step, top_margin);
cairo_rel_line_to(ctx, 0, graph_height);
cairo_stroke(ctx);
}
cairo_restore(ctx);
// draw and write time line
cairo_save(ctx);
cairo_set_source_rgb(ctx, 0, 0, 0);
cairo_set_line_width(ctx, 0.25*cairo_get_line_width(ctx));
// "T" label
cairo_move_to(ctx, left_graph_margin,
top_margin + graph_height + 2.0 * _y_unit);
cairo_show_text(ctx,"T");
// ruler drawing cycle
for(unsigned int t=0; t<=hist_front; t++)
{
// tick
cairo_move_to(ctx, left_graph_margin + (t+1)*_x_unit,
top_margin + graph_height);
cairo_rel_line_to(ctx, 0, 0.5 * _y_unit);
// value
Glib::ustring val;
to_string<int>(t, val);
cairo_move_to(ctx, left_graph_margin + (t+1)*_x_unit,
top_margin + graph_height + 2.0 * _y_unit);
cairo_show_text(ctx,val.c_str());
} // ~ for(int t=0; t<=pos; t++)
cairo_stroke(ctx);
cairo_restore(ctx);
}
void
SimulationWidget::draw_bars(cairo_t* ctx)
{
// useful constants
const History& hist = _simulation->get_history();
unsigned int hist_front = hist.get_front();
const double top_margin = _yu_top_margin * _y_unit;
const double left_graph_margin = _xu_left_graph_margin * _x_unit;
const double process_bar_spacing = _yu_process_bar_spacing * _y_unit;
const double process_bar_height = _yu_process_bar_height * _y_unit;
const double thread_bar_spacing = _yu_thread_bar_spacing * _y_unit;
const double thread_bar_height = _yu_thread_bar_height * _y_unit;
const double thread_height = (2.0*_yu_thread_bar_spacing+_yu_thread_bar_height) * _y_unit;
unsigned int from_time;
// need to use gradients then make they
make_gradients();
if(_partial_redraw && _last_drawn>0)
{
from_time = _last_drawn;
}
else
{
from_time = 1;
}
#ifndef NDEBUG
std::cout << " SimulationWidget::draw_bars from:" << from_time << " to:" << hist_front << std::endl;
#endif
// time cycle
for(unsigned int t=from_time; t<=hist_front; t++)
{
// We draw the interval [0, front), entirely, and
// the instant "front" as a briefer `pulse'
float width_percent = 1.0f;
if(t == hist_front)
width_percent = 0.1f;
// draw schedulables bars
double xpos = left_graph_margin + t * _x_unit; // left start of first process
double ypos = top_margin; // vertical start of first process
const Environment::Processes& processes = hist.get_environment_at(t).get_processes();
Environment::Processes::const_iterator proc_iter = processes.begin();
// - draw each process' bar
while(proc_iter!=processes.end())
{
Process* p = (*proc_iter);
proc_iter++;
ypos += process_bar_spacing; // white row before bar
// show a single process rectangle
draw_instant_rect(ctx, xpos, ypos,
_x_unit * width_percent, process_bar_height,
p->get_state());
// skip height of process bar
ypos += process_bar_height;
// paint threads' bars if needed
if(_show_threads)
{
const std::vector<Thread*>& tvect = p->get_threads();
std::vector<Thread*>::const_iterator thr_iter = tvect.begin();
while(thr_iter!=tvect.end())
{
Thread* t = (*thr_iter);
thr_iter++;
// show a single thread rectangle
draw_instant_rect(ctx, xpos, ypos + thread_bar_spacing,
_x_unit * width_percent, thread_bar_height, t->get_state());
// skip height of thread bar
ypos += thread_height;
} // ~ while(thr_iter!=tvect.end())
} // ~ if(_show_threads)
ypos += process_bar_spacing; // white row after bar
} // ~ while(proc_iter!=processes.end())
} // ~ for(int t=0; t<=hist_front; t++)
_last_drawn = hist_front;
_partial_redraw = false;
}
// draw single rectangle using gradients
void
SimulationWidget::draw_instant_rect(cairo_t* ctx, double x, double y,
double w, double h, Schedulable::state state)
{
cairo_matrix_t matrix;
switch(state)
{
case Schedulable::state_running:
cairo_save(ctx);
cairo_set_source(ctx, _running_process_gradient);
// translate the gradient at desired position
cairo_matrix_init_translate(&matrix, 0, -y);
cairo_pattern_set_matrix (_running_process_gradient, &matrix);
// put the filled rectangle
cairo_rectangle(ctx, x, y, w, h);
cairo_fill(ctx);
cairo_restore(ctx);
break;
case Schedulable::state_ready:
cairo_save(ctx);
cairo_set_source(ctx, _ready_process_gradient);
// translate the gradient at desired position
cairo_matrix_init_translate(&matrix, 0, -y);
cairo_pattern_set_matrix (_ready_process_gradient, &matrix);
// put the filled rectangle
cairo_rectangle(ctx, x, y, w, h);
cairo_fill(ctx);
cairo_restore(ctx);
break;
case Schedulable::state_blocked:
cairo_save(ctx);
cairo_set_source(ctx, _blocked_process_gradient);
// translate the gradient at desired position
cairo_matrix_init_translate(&matrix, 0, -y);
cairo_pattern_set_matrix (_blocked_process_gradient, &matrix);
// put the filled rectangle
cairo_rectangle(ctx, x, y, w, h);
cairo_fill(ctx);
cairo_restore(ctx);
break;
case Schedulable::state_future:
return; // don't draw
break;
case Schedulable::state_terminated:
return; // don't draw
break;
} // ~ switch(state)
}
void
SimulationWidget::calc_drawing_size(cairo_t* ctx, size_t& width, size_t& height)
{
if(!_simulation)
return;
// evaluate number of processes and threads
count_elements();
int pos = _simulation->get_history().get_front();
// units are defined in terms of text dimensions
cairo_text_extents_t extents;
Glib::ustring val("999");
cairo_text_extents(ctx, val.c_str(), &extents);
if(_x_unit<extents.width)
_x_unit=extents.width;
if(_y_unit<extents.height)
_y_unit=extents.height;
// left margin, labels, graph
width = (size_t)((_xu_left_graph_margin + 3.0 + pos) * _x_unit);
// top margin, processes*height and space evaluation
height = (size_t)((_yu_top_margin +
(_yu_process_bar_spacing*2.0+_yu_process_bar_height)
* _n_proc + 3.0) * _y_unit);
// optional threads*height and space evaluation
if(_show_threads)
height += (size_t)
(_n_thr * (_yu_thread_bar_spacing*2.0+_yu_thread_bar_height) * _y_unit);
}
// evaluate number of processes and threads
void
SimulationWidget::count_elements()
{
_n_proc = _n_thr = 0;
const History& hist = _simulation->get_history();
const Environment& env = hist.get_last_environment();
// count processes
const Environment::Processes& pvect = env.get_processes();
_n_proc = pvect.size();
// iterate trough processes to compute threads number
Environment::Processes::const_iterator proc_iter = pvect.begin();
while(proc_iter!=pvect.end())
{
Process* p = (*proc_iter);
proc_iter++;
if(_show_threads)
_n_thr += p->get_threads().size();
}
}
void
SimulationWidget::make_gradients()
{
// linear gradients are referred to 0, 0
// must be translated if used elsewhere
_ready_process_gradient = cairo_pattern_create_linear(0, 0, 0, _yu_process_bar_height * _y_unit);
// yellow
cairo_pattern_add_color_stop_rgb(_ready_process_gradient, 0.0, 1.00, 0.7, 0.0);
cairo_pattern_add_color_stop_rgb(_ready_process_gradient, 0.3, 1.00, 0.9, 0.0);
cairo_pattern_add_color_stop_rgb(_ready_process_gradient, 1.0, 1.00, 0.7, 0.0);
_running_process_gradient = cairo_pattern_create_linear(0, 0, 0, _yu_process_bar_height * _y_unit);
// green
cairo_pattern_add_color_stop_rgb(_running_process_gradient, 0.0, 0.0, 0.8, 0.0);
cairo_pattern_add_color_stop_rgb(_running_process_gradient, 0.3, 0.0, 1.0, 0.0);
cairo_pattern_add_color_stop_rgb(_running_process_gradient, 1.0, 0.0, 0.65, 0.0);
_blocked_process_gradient = cairo_pattern_create_linear(0, 0, 0, _yu_process_bar_height * _y_unit);
// red
cairo_pattern_add_color_stop_rgb(_blocked_process_gradient, 0.0, 0.85, 0.0, 0.0);
cairo_pattern_add_color_stop_rgb(_blocked_process_gradient, 0.3, 1.0, 0.5, 0.5);
cairo_pattern_add_color_stop_rgb(_blocked_process_gradient, 1.0, 0.65, 0.0, 0.0);
}
// brings a popup menu to select scaling
bool
SimulationWidget::on_button_press_event(GdkEventButton* event)
{
// activate on right button press
if((event->type & Gdk::BUTTON_PRESS) == Gdk::BUTTON_PRESS && (event->button == 3))
{
Glib::ustring ui_info =
"<ui>"
" <popup name='PopupMenu'>";
CairoWidget::scaling_mode scaling = get_scaling_mode();
RefPtr<ActionGroup> action_group = Gtk::ActionGroup::create();
// adds action and menu item for "no scaling"
if(scaling!=CairoWidget::scaling_none)
{
action_group->add( Gtk::Action::create("ScalingNone", "_No scaling"),
sigc::mem_fun(*this, &SimulationWidget::_on_no_scaling) );
ui_info += " <menuitem action='ScalingNone'/>";
}
// adds action and menu item for "fit in window"
if(scaling!=CairoWidget::scaling_min)
{
// scaling==scaling_none
action_group->add( Gtk::Action::create("ScalingFit", "_Fit in window"),
sigc::mem_fun(*this, &SimulationWidget::_on_fit_scaling) );
ui_info += " <menuitem action='ScalingFit'/>";
}
// adds action and menu item for "stretch in window"
if(scaling!=CairoWidget::scaling_all)
{
// scaling==scaling_none
action_group->add( Gtk::Action::create("ScalingStretch", "_Stretch in window"),
sigc::mem_fun(*this, &SimulationWidget::_on_stretch_scaling) );
ui_info += " <menuitem action='ScalingStretch'/>";
}
RefPtr<UIManager> UIManager = Gtk::UIManager::create();
UIManager->insert_action_group(action_group);
ui_info +=
" </popup>"
"</ui>";
// insert menu
UIManager->add_ui_from_string(ui_info);
Gtk::Menu* menu = dynamic_cast<Gtk::Menu*>(UIManager->get_widget("/PopupMenu"));
// run the menu
menu->popup(event->button, event->time);
return true; //It has been handled.
}
else
return false;
}
void
SimulationWidget::_on_no_scaling()
{
#ifndef NDEBUG
std::cout << "before SimulationWidget::_on_no_scaling mode=" << get_scaling_mode() << std::endl;
#endif
set_scaling_mode(CairoWidget::scaling_none);
#ifndef NDEBUG
std::cout << "after SimulationWidget::_on_no_scaling mode=" << get_scaling_mode() << std::endl;
#endif
resize_redraw();
// set_size_request (20, 20); // force container redimensioning
}
void
SimulationWidget::_on_fit_scaling()
{
#ifndef NDEBUG
std::cout << "before SimulationWidget::_on_fit_scaling mode=" << get_scaling_mode() << std::endl;
#endif
set_scaling_mode(CairoWidget::scaling_min);
#ifndef NDEBUG
std::cout << "after SimulationWidget::_on_fit_scaling mode=" << get_scaling_mode() << std::endl;
#endif
resize_redraw();
// set_size_request (20, 20); // force container redimensioning
}
void
SimulationWidget::_on_stretch_scaling()
{
#ifndef NDEBUG
std::cout << "before SimulationWidget::_on_stretch_scaling mode=" << get_scaling_mode() << std::endl;
#endif
set_scaling_mode(CairoWidget::scaling_all);
#ifndef NDEBUG
std::cout << "after SimulationWidget::_on_stretch_scaling mode=" << get_scaling_mode() << std::endl;
#endif
resize_redraw();
// set_size_request (20, 20); // force container redimensioning
}